题目描述
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
解题思路
- dfs
- 首先利用一个全局的flag表示被没被访问过
-
终止的条件(比如说<0 >= rows等) - count传引用,累加即可
class Solution {
public:
int movingCount(int threshold, int rows, int cols)
{
if (threshold <= 0 || rows <= 0 || cols <= 0)
return 0;
bool flag[rows * cols];
for(int i = 0; i < rows * cols; i++){
flag[i] = false;
}
int count = 0;
countSteps(threshold, rows, cols, 0, 0, flag, count);
return count;
}
void countSteps(int threshold, int rows, int cols, int r, int c, bool* visited, int& count){
if(r < 0 || r >= rows || c < 0 || c >= cols || visited[r * cols + c] == true|| countNum(r) + countNum(c) > threshold){
return;
}
count++;
visited[r * cols + c] = true;
countSteps(threshold, rows, cols, r - 1, c, visited, count);
countSteps(threshold, rows, cols, r , c - 1, visited, count);
countSteps(threshold, rows, cols, r + 1, c, visited, count);
countSteps(threshold, rows, cols, r , c + 1, visited, count);
}
int countNum(int t){
int res = 0;
while(t != 0){
res += t % 10;
t /= 10;
}
return res;
}
};