[LeetCode]64. Minimum Path Sum

dp

Posted by JinFei on February 5, 2020

题目描述

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Example:

  Input: <br>
    [ <br>
      [1,3,1], <br>
      [1,5,1], <br>
      [4,2,1] <br>
    ] <br>
    Output: 7 <br>
    Explanation:  <br>
    Because the path 1→3→1→1→1 minimizes the sum. <br>

Note:

  1. You can only move either down or right at any point in time.

dp解题思路

  • 主要是填一个二维表格,dp递归式为dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
  • 最后返回dp[i][j]

C++代码

class Solution {
public:
    int res = 0;
    int minPathSum(vector<vector<int>>& grid) {
        if(grid.size() == 0){
            return 0;
        }
        int row = grid.size();
        int col = grid[0].size();
        int dp[row][col] = {0};
        dp[0][0] = grid[0][0];
        for(int i = 1; i < col; i++){
            dp[0][i] = grid[0][i] + dp[0][i - 1];
        }
        for(int i = 1; i < row; i++){
            dp[i][0] = grid[i][0] + dp[i - 1][0];
        }
        for(int i = 1; i < row; i++){
            for(int j = 1; j < col; j++){
                dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
            }
        }
        return dp[row - 1][col - 1];
    }

};

0205第二遍解题

  • 首先类似于机器人路径 只能往右往下移动 总共有多少路径
  • 注意这道题的区别 是最后的sum最小
  • 这里初始化的时候就需要注意 行里元素初始化时 与当前元素的 前一行/列元素初始化时有关 (进行累加)
  • 然后 dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]

C++代码

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int row = grid.size();
        int col = grid[0].size();
        int dp[row][col] = {0};
        dp[0][0] = grid[0][0];
        for(int i = 1; i < col; i++){
            dp[0][i] = dp[0][i - 1] + grid[0][i];
        }
        for(int i = 1; i < row; i++){
            dp[i][0] = dp[i - 1][0] + grid[i][0];
        }
        for(int i = 1; i < row; i++){
            for(int j = 1; j < col; j++){
                dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
            }
        }
        return dp[row - 1][col - 1];
    }
};