[LeetCode]127. Word Ladder

dp,字母的组合

Posted by JinFei on February 18, 2020

题目描述

Given two words (beginWord and endWord), and a dictionary’s word list, find the length of shortest transformation sequence from beginWord to endWord, such that: Only one letter can be changed at a time. Each transformed word must exist in the word list. Note that beginWord is not a transformed word.

NOTE

  • Return 0 if there is no such transformation sequence.
  • All words have the same length.
  • All words contain only lowercase alphabetic characters
  • You may assume no duplicates in the word list.
  • You may assume beginWord and endWord are non-empty and are not the same.

Example1:

  Input:
    beginWord = "hit",
    endWord = "cog",
    wordList = ["hot","dot","dog","lot","log","cog"]
    Output: 5
    Explanation: As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
    return its length 5.

Example2:

  Input:
    beginWord = "hit"
    endWord = "cog"
    wordList = ["hot","dot","dog","lot","log"]
    Output: 0
    Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.

解题思路

  • BFS搜索
  • 题意是,由一个单词开始,每次只能变化一个字母,这个变化后的字符串需要在集合里面,然后需要经过多少步才能变换到最后的位置?
  • 跟走迷宫类似,只是把走迷宫问题的4个方向转变成了26个方向
  • 为了提到字典的查找效率,我们使用HashSet保存所有的单词。
  • 然后我们需要一个HashMap,来建立某条路径结尾单词和该路径长度之间的映射,并把起始单词映射为1。
  • 既然是BFS,我们需要一个队列queue,把起始单词排入队列中,开始队列的循环,取出队首词,然后对其每个位置上的字符,用26个字母进行替换,如果此时和结尾单词相同了,就可以返回取出词在哈希表中的值加一。
  • 如果替换词在字典中存在但在哈希表中不存在,则将替换词排入队列中,并在哈希表中的值映射为之前取出词加一。
  • 如果循环完成则返回0
class Solution {
public:
    int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
        unordered_set<string> wordSet(wordList.begin(), wordList.end());
        if(!wordSet.count(endWord)){
            return 0;
        }
        unordered_map<string, int> mmap;
        mmap[beginWord] = 1;
        queue<string> q;
        q.push(beginWord);
        while(!q.empty()){
            string word = q.front();
            q.pop();
            for(int i = 0; i < word.size(); i++){
                string newWord = word;
                for(int j = 0; j < 26; j++){
                    newWord[i] = j + 'a';
                    if(wordSet.count(newWord) && newWord == endWord){
                        return mmap[word] + 1;
                    }
                    if(wordSet.count(newWord) && !mmap.count(newWord)){
                        mmap[newWord] = mmap[word] + 1;
                        q.push(newWord);
                    }
                }
            }
        }
        return 0;
    }
};