[LeetCode]Range Sum Query - Immutable

直方图思想

Posted by JinFei on August 17, 2021

题目描述

Given an integer array nums, handle multiple queries of the following type:

Calculate the sum of the elements of nums between indices left and right inclusive where left <= right. Implement the NumArray class:

NumArray(int[] nums) Initializes the object with the integer array nums. int sumRange(int left, int right) Returns the sum of the elements of nums between indices left and right inclusive (i.e. nums[left] + nums[left + 1] + … + nums[right]).

Example1:

Input [“NumArray”, “sumRange”, “sumRange”, “sumRange”] [[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]] Output [null, 1, -1, -3]

Explanation NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]); numArray.sumRange(0, 2); // return (-2) + 0 + 3 = 1 numArray.sumRange(2, 5); // return 3 + (-5) + 2 + (-1) = -1 numArray.sumRange(0, 5); // return (-2) + 0 + 3 + (-5) + 2 + (-1) = -3

Constraints:

  • 1 <= nums.length <= 10^4
  • 10^5 <= nums[i] <= 10^5
  • 0 <= left <= right < nums.length
  • At most 104 calls will be made to sumRange.

解题思路

  • 实现一个累加操作,类似于直方图思想
  • 最后得到[left]到[right]的时候,直接由right-left

##

class NumArray {
public:
    NumArray(vector<int>& nums) {
        dp = nums;
        for(int i = 1; i < nums.size(); i++){
            dp[i] += dp[i - 1];
        }
    }
    
    int sumRange(int left, int right) {
        if(left == 0){
            return dp[right];
        }
        return dp[right] - dp[left - 1];
    }
private:
    vector<int> dp;
};

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray* obj = new NumArray(nums);
 * int param_1 = obj->sumRange(left,right);
 */

普通解法(这个也能通过)

class NumArray {
public:
    NumArray(vector<int>& nums) {
        this -> nums = nums;
    }
    
    int sumRange(int left, int right) {
        int res = 0;
        for(int i = left; i <= right; i++){
            res += nums[i];
        }
        return res;
    }
private:
    vector<int> nums;
};

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray* obj = new NumArray(nums);
 * int param_1 = obj->sumRange(left,right);
 */