[LeetCode]37. 解数独

回溯查找

Posted by JinFei on September 1, 2021

题目描述

编写一个程序,通过填充空格来解决数独问题。 数独的解法需 遵循如下规则: 数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图) 数独部分空格内已填入了数字,空白格用 ’.’ 表示。

Example 1:

数独状态 输入:board = [[“5”,”3”,”.”,”.”,”7”,”.”,”.”,”.”,”.”],[“6”,”.”,”.”,”1”,”9”,”5”,”.”,”.”,”.”],[”.”,”9”,”8”,”.”,”.”,”.”,”.”,”6”,”.”],[“8”,”.”,”.”,”.”,”6”,”.”,”.”,”.”,”3”],[“4”,”.”,”.”,”8”,”.”,”3”,”.”,”.”,”1”],[“7”,”.”,”.”,”.”,”2”,”.”,”.”,”.”,”6”],[”.”,”6”,”.”,”.”,”.”,”.”,”2”,”8”,”.”],[”.”,”.”,”.”,”4”,”1”,”9”,”.”,”.”,”5”],[”.”,”.”,”.”,”.”,”8”,”.”,”.”,”7”,”9”]] 输出:[[“5”,”3”,”4”,”6”,”7”,”8”,”9”,”1”,”2”],[“6”,”7”,”2”,”1”,”9”,”5”,”3”,”4”,”8”],[“1”,”9”,”8”,”3”,”4”,”2”,”5”,”6”,”7”],[“8”,”5”,”9”,”7”,”6”,”1”,”4”,”2”,”3”],[“4”,”2”,”6”,”8”,”5”,”3”,”7”,”9”,”1”],[“7”,”1”,”3”,”9”,”2”,”4”,”8”,”5”,”6”],[“9”,”6”,”1”,”5”,”3”,”7”,”2”,”8”,”4”],[“2”,”8”,”7”,”4”,”1”,”9”,”6”,”3”,”5”],[“3”,”4”,”5”,”2”,”8”,”6”,”1”,”7”,”9”]] 解释:输入的数独如上图所示,唯一有效的解决方案如下所示: 数独状态

Constraints:

  • board.length == 9
  • board[i].length == 9
  • board[i][j] 是一位数字或者 ‘.’
  • 题目数据 保证 输入数独仅有一个解

解题思路

  • 回溯思路
  • 使用行,列,方格来表示此时是否有值
  • 相应的模版:

    backtrack(当前进度): if 当前进度 == 最终进度: 结果集.加入(进度状态) else: for 下一节点 in 当前进度下可以到达的节点: if 节点 满足 限制状态: 修改进度状态为下一节点 修改限制状态为下一节点 backtrack(下一节点) 修改限制状态回当前进度 修改进度状态回当前进度 //最后这两行改回就是所谓的“回溯”

C++代码

class Solution {
private:
    // 必要的数据 模拟整个棋盘,行 列 方格
    bool mCol[9][9];
    bool mRow[9][9];
    bool mCell[9][9];
    // 存在待插入数据的位置(即空白的格的坐标),行列为first, second
    vector<pair<int, int>> mSpace;

public:
    void solveSudoku(vector<vector<char>>& board) {
        if(board.size() == 0){
            return;
        }
        for(int i = 0; i < board.size(); i++){
            for(int j = 0; j < board[0].size(); j++){
                char c = board[i][j];
                if(board[i][j] == '.'){
                    mSpace.push_back({i, j});
                }else{
                    mRow[i][c - '1'] = true;
                    mCol[j][c - '1'] = true;
                    mCell[i / 3 * 3 + j / 3][c - '1'] = true;
                }
            }
        }
        dfs(board, 0);
    }
    bool dfs(vector<vector<char>>& board, int index){
        if(index == mSpace.size()){
            return true;
        }
        int row = mSpace[index].first;
        int col = mSpace[index].second;
        for(auto c  = '1'; c <= '9'; c++){
            int num = c - '1';
            if(!mRow[row][num] && !mCol[col][num] && !mCell[row / 3 * 3 + col / 3][num]){
                board[row][col] = c;
                mRow[row][num] = true;
                mCol[col][num] = true;
                mCell[row / 3 * 3 + col / 3][num] = true;
                if(dfs(board, index + 1)){
                    return true;
                }
                mRow[row][num] = false;
                mCol[col][num] = false;
                mCell[row / 3 * 3 + col / 3][num] = false;
            }
        }
        return false;
    }
};