题目描述
一个班级里有 n 个学生,编号为 0 到 n - 1 。每个学生会依次回答问题,编号为 0 的学生先回答,然后是编号为 1 的学生,以此类推,直到编号为 n - 1 的学生,然后老师会重复这个过程,重新从编号为 0 的学生开始回答问题。 给你一个长度为 n 且下标从 0 开始的整数数组 chalk 和一个整数 k 。一开始粉笔盒里总共有 k 支粉笔。当编号为 i 的学生回答问题时,他会消耗 chalk[i] 支粉笔。如果剩余粉笔数量 严格小于 chalk[i] ,那么学生 i 需要 补充 粉笔。 请你返回需要 补充 粉笔的学生 编号 。
Example 1:
输入:chalk = [5,1,5], k = 22 输出:0 解释:学生消耗粉笔情况如下:
- 编号为 0 的学生使用 5 支粉笔,然后 k = 17 。
- 编号为 1 的学生使用 1 支粉笔,然后 k = 16 。
- 编号为 2 的学生使用 5 支粉笔,然后 k = 11 。
- 编号为 0 的学生使用 5 支粉笔,然后 k = 6 。
- 编号为 1 的学生使用 1 支粉笔,然后 k = 5 。
- 编号为 2 的学生使用 5 支粉笔,然后 k = 0 。 编号为 0 的学生没有足够的粉笔,所以他需要补充粉笔。
Example 2:
输入:chalk = [3,4,1,2], k = 25 输出:1 解释:学生消耗粉笔情况如下:
- 编号为 0 的学生使用 3 支粉笔,然后 k = 22 。
- 编号为 1 的学生使用 4 支粉笔,然后 k = 18 。
- 编号为 2 的学生使用 1 支粉笔,然后 k = 17 。
- 编号为 3 的学生使用 2 支粉笔,然后 k = 15 。
- 编号为 0 的学生使用 3 支粉笔,然后 k = 12 。
- 编号为 1 的学生使用 4 支粉笔,然后 k = 8 。
- 编号为 2 的学生使用 1 支粉笔,然后 k = 7 。
- 编号为 3 的学生使用 2 支粉笔,然后 k = 5 。
- 编号为 0 的学生使用 3 支粉笔,然后 k = 2 。 编号为 1 的学生没有足够的粉笔,所以他需要补充粉笔。
Constraints:
- chalk.length == n
- 1 <= n <= 10^5
- 1 <= chalk[i] <= 10^5
- 1 <= k <= 10^9
解题思路
- 简单模拟题
C++代码
class Solution {
public:
int chalkReplacer(vector<int>& chalk, int k) {
long long sum = 0;
for(auto& i : chalk){
sum += i;
}
k %= sum;
int pos = 0;
while(true){
if(chalk[pos] <= k){
k -= chalk[pos];
pos++;
if(pos == chalk.size()){
pos = 0;
}
}else{
return pos;
}
}
return -1;
}
};